Fuzzy function approximators with ellipsoidal regions
نویسندگان
چکیده
منابع مشابه
Robust Function Approximation Using Fuzzy Rules with Ellipsoidal Regions
This paper discusses robust function approximation when the Takagi-Sugeno type model is used for the consequent part of fuzzy rules. With this model, the parameters of the liner equation that defines the output value of the fuzzy rule are determined by the least-squares method. Therefore, if the training data include outliers, the method fails to determine the parameter values correctly. To ove...
متن کاملFuzzy Neural Networks as “Good” Function Approximators
The paper discusses the generalization capability of two hidden layer neural networks based on various fuzzy operators introduced earlier by the authors as Fuzzy Flip-Flop based Neural Networks (FNNs), in comparison with standard networks tansig function based, MATLAB Neural Network Toolbox in the frame of a simple function approximation problem. Various fuzzy neurons, one of them based on new ...
متن کاملA Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions
A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able to adapt the distance norm to the underlying distribution of the prototype data poi...
متن کاملFuzzy systems with defuzzification are universal approximators
In this paper, we consider a fundamental theoretical question: Is it always possible to design a fuzzy system capable of approximating any real continuous function on a compact set with arbitrary accuracy? Moreover, we research whether the answer to the above question is positive when we restrict to a fixed (but arbitrary) type of fuzzy reasoning and to a subclass of fuzzy relations. This resul...
متن کاملNonlinear Systems Using Fuzzy Approximators
This paper describes the design of an adaptive direct control scheme for a class of nonlinear systems. The architecture is based on a fuzzy inference system (FIS) of Takagi Sugeno (TS) type to approximate a feedback linearization control law. The parameters of the consequent part of the fuzzy system are adapted and changed according to a law derived using Lyapunov stability theory. The asymptot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
سال: 1999
ISSN: 1083-4419
DOI: 10.1109/3477.790450